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Abstract

Recently benzyladenine has been isolated as a natural cytokinin from a number of plants. The natural occurrence
of this cytokinin will change the attitude with which physiologists view this hormone. This review attempts to put
into context what is known about this cytokinin and its derivatives and to compare and contrast its metabolism
and the function and physiological action of its various metabolites. Nothing is known about the biosynthesis of
benzyladenine. [ts structure would suggest that its biosynthetic pathway may differ considerably from that of zeatin
and iso-pentenyladenine.

Abbreviations: Ade = adenine; Ado = adenosine; BA = benzyladenine; [9R]BA = BA ribonucleoside; [9R-MP]BA
= BA nucleotide; [9R-DP]BA = BA dinucleotide; [9R-TP]BA = BA trinucleotide; [3G]BA = BA 3 glucoside;
[7GIBA = BA 7 glucoside; [9G]BA = BA 9 glucoside; [SR-G]BA = BA 9-ribosylglucoside; [9Ala]BA = BA
alanine-conjugate; (20H)BA = BA ortho-OH; (20H)[SR]BA = BA ortho-OH-riboside; KN = kinetin; {SR]KN
= KN ribonucleoside; DHZ = dihydrozeatin; Z = trans-zeatin; (9R]Z = zeatin ribonucleoside; [7G]Z = zeatin-7-
glucoside; [9G]Z = zeatin-9-glucoside; [9Ala)Z = zeatin alanine-conjugate; (OG)[9R]Z = O-glucoside of zeatin

ribonucleoside; [9R-MP]Z = zeatin nucleotide; iP =

1. Introduction

Despite its recent identification as a naturally-
occurring plant product [156] the purine cytokinin
6-(benzyl-amino)purine (Benzyladenine; BA) is still
generally viewed as a synthetic compound. [t is widely
used in plant systems and frequently analogies are
drawn between it and the synthetic, kinetin, 6-(furano-
sylamino)purine and naturally occurring zeatin, (6-
(4-hydrozy-3-methylbut-rrans-2-enylamino) purine),
with respect to synthesis, activity, metabolism and
biological activity. This approach does not necessarily
give a true picture of the role of cytokinins in general
in plant growth and development. This review deals
specifically with BA in an attempt to get an overview
of what is known about the metabolism physiology and
biochemuistry of this cytokinin.

iso-pentenyladenine; [9R]iP =

iP ribonucleoside.

Although the biochemical and physiological effects
of cytokinins are well documented [121] and structure-
activity patterns have emerged {132, 226], their precise
action remains unknown. One prerequisite for progress

“in the understanding of the molecular basis of cytokinin

action would seem to be a detailed knowledge of
cytokinin uptake and metabolism in plant cells [47].
‘Multilevels of experimental approach’ have been
advocated {32] for the elucidation of the mechanism
of cytokinin action. Lack of determining the active
form(s) of cytokinin is probably one of the most
significant unsolved problems in cytokinin research.
Currently it is not known if cytokinin activity in vivo
occurs specifically at the level of the base, riboside,
or ribotide [203]. Cytokinins may not be active as
such, butonly after metabolic transformation into other
substances [72]. Such substances may not necessarily
be recognisable as cytokinins. This may explain the
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limited success of hormone receptor studies to date
"1
(23].

2. The free base-benzyladenine [BA]

Benzyladenine (BA) affects the growth of both animal
[15] and plant [132] cells. The base BA is an adenine
derivative with a substitution on the sixth position
of the purine nucleus [191]. Recently, this cytokinin
was found as a free, naturally occurring cytokinin
(155]. This compound has been shown to affect
plant metabolism and a wide variety of physiological
responses have been recorded.

Besides delaying senescence [66, 78] including
both floral [216] and monocarpic senescence [128],
BA promotes chlorophyll retention [181] as well as
its formation [44]. Thus cytokinin enhances photosyn-
thetic activity [1, 28, 115] and reduces respiration rates
[181]. The application of BA has resulted in increased
shoottoroot ratios [ 102}, increased production of ethy-
lene [181], lowered stomatal resistance [76], increased
leaf expansion {187] and stimulated protein synthesis
(199]. Adverse environmental conditions have been
counteracted through use of BA, including heat stress
[28]. It was not shown whether this was due 10 BA
itself or to an increase in the natural cytokinin levels.
A stimulative effect of BA on plant mineral nutrition
was associated with an effect on the levels of endoge-
nous cytokinins [102].

Applied as the base, BA is currently the most
frequently and most successful cytokinin used in
micropropagation [204]. However, when applied to
field crops, BA showed disappointing results in delay-
ing senescence [53]. Zhang et al. [241] suggested
that the ‘design’ of cytokinins which are more field-
effective than BA “would be facilitated by a study of
the metabolism of BA'.

Morris [151] suggested that kinetin applied to
roots may be converted to an endogenous cytokinin
before export to the shoot. However, within elm
shaots, [8-'*C]BA appears to be largely transported in
the unmetabolised state {17]. The cytokinin ribosides
are generally considered the translocatory cytokinin
species (94, 229]. Despite the report on BA transport
in elms, research on the potential conversion of BA to
its riboside {[9R]BA or to endogenous cytokinin may
prove profitable.

Much circumstantial evidence derived from bioas-
says exists to indicate that as a base, BA is the active
cytokinin form [14]. Matsubara [132] considered BA

to be the most active cytokinin in the class of ring-
substituted aminopurines. Cytokinin-binding protein
studies {34] have more directly implicated cytokinin
bases as one of the active forms. Although the base is
assumed 10 be active per se, there is no unequivocal
evidence to support this proposition {222, 235). To
date, this issue has not been unequivocally resolved.
Laloue and Pethe {104] presented results on growth
studies with tobacco cell cultures which indicated that
conversion of cytokinin ribosides to bases is necessary
for activity. Uptake of exogenously supplied BA by
a variety of experimental systems was mostly linear
in relation to the external BA concentration, suggest-
ing a passive role (108, 143, 227]. However, uptake

of cytokinin base has also been related to the rate of

cytokinin metabolism inside the cell (45, 49].

In the soybean callus biocassay (141], BA gave an
optimum response when applied at a concentration
between 107% and 10~5 M [213]. Activity in a similar
range has been recorded for zeatin [225]. Van Staden
{209} compared the activities of BA, [9R]BA and [9R-
MP]BA in the same bioassay system. Of these three.
BA appeared most active, with the riboside more active
than the nucleotide. It was suggested that the applied
cytokinins might not have been taken up by the tissue at
the same rate, or that differences in the metabolism of
these metabolites occurred. In this case, BA may have
been taken up quicker, or metabolised more slowly if
active per se, or quickly converted to the ‘active form'’
of cytokinin. Problems associated with the exogenous
application of cytckinins to plant systems are many
and varied.

Hecht et al. {84] reported that both the nucleoside
and nucleotide were less active than the corresponding
base. Their findings led to the suggestion that exoge-
nous bases do not require activation before the expres-
sion of cytokinin activity. Similarly, Laloue et al. (107]
reported that iP was three times as active as its nucle-
oside in a tobacco callus bioassay. However, Mok et
al. [150] reported that reversed activities of cytokinin
bases and nucleosides were detected with iP and [9R]iP
in some Phaseolus callus cultures.

Peters and Beck [176] reasoned that cell division-
controlling substances would be expected in highest
concentrations during the logarithmic phase of cell
growth. Yet, at the start of the log phase in Cheno-

podium cell suspensions, free bases were detected in
low concentrations, suggesting that bases may not be
involved in the regulation of cell division activity.
However, other researchers [85] are of the opinion
that low non-polar cytokinin levels do not neces-
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sarily reflect cytokinin inactivity in tissue, but rather
implies their active metabolism. coupled to cytokinin
action. Future research which considers endogenous
cytokinin levels before, during, and after physiological
responses, may yet result in a re-evaluation of the con-
cept of ‘cytokinin activity’ and the molecular species
associated with it.

3. Benzyladenine riboside - [9R]BA

The 9-riboside of BA ([9R]BA) is a naturally-
occurring cytokinin in anise plant cells [64]. Following
exogenous application of BA, [9R]BA has been iden-
tified as a prominent {54] and sometimes dominant
metabolite from a variety to species {80, 134, 236].
The analogous riboside of zeatin ([9R}Z) was the main
detectable metabolite when zeatin was supplied to
detached leaves of Xanthium strumarium [87].In Vinca
rosea crown gall tissue, [9R]Z and the correspond-
ing O-glucoside ((OG[9R]Z) were found by mass
spectrometric technique to be the most abundant
natural cytokinins [185]. Other systems have been
recorded as metabolising applied BA quite differently.
Conversion of BA to [9R]BA was almost negligible in
radish seedlings [235].

The 9-3-D-ribonucleosides of N®-adenine deriva-
tives have been synthesised and tested [113, [14].
Their activity in the tobacco bioassay is not as high as
the corresponding base. Metabolites of BA substituted
at position 9 on the purine ring were less active than
the base in the soybean bioassay {74]. These authors
attributed this lower activity to the difficulty which
the tssues may have in converting such compounds
to the base. Riboside degradation through isoprenoid
sidechain cleavage (resulting in adenosine formation)
has been correlated with the weak activity of [9R]iP
in some tissues (P. vulgaris cv. Great Northern) [148].
Tissues of P. lunatus cv. Kingston converted the unsat-
urated riboside to the corresponding nucleotide, and
activity was maintained. This investigation highlighted
the prominent intra-specific differences in cytokinin
metabolism which occurs naturally.

The free base BA was among metabolites formed
from the 9-substituted cytokinin, 6-benzylamino-9-
methylpurine, suggesting that the biological activity
of 9-substituted cytokinins could be accounted for
by their conversion to the free base [73]. Other
reports confirm the relatively low activity of cytokinin
ribosides, both natural and synthetic, in a variety of
bicassay systems {83, 107, 113, 133, 182, 196, 209,

{35

233]. Generally, a second substituent in the 9-position
of N®-substituted purines lowers. but does not elimi-
naie cytokinin activity {132, 192).

Not all researchers consider the riboside less active
than the corresponding base. Bopp and Erichsen [22]
viewed observed differences as more a consequence
of restricted uptake than of an inefficiency of the sub-
stance. Peters and Beck [176] have recently consid-
ered the endogenous cytokinin patterns at all growth
stages of a Chenopodium cell culture. They considered
that cytokinin ribosides likely control cell division,
more so than free bases which have traditionally been
considered the active form. It remains to be deter-
mined whether activity resides in the ribonucleosides,
or is acquired only on conversion to their bases. Most
evidence to date has supported the latter concept [73].

Cytokinin ribosides are generally considered to
be the translocatory species [163]. Trans-membrane
transport of the 9-riboside of kinetin ([9RIKN) was
determined by Van Staden and Mooney [224], using
Catharanthus roseus crown gall callus. Earlier, Laloue
et al. [105] had shown ready uptake of [9R]BA by
tobacco cells. Movement of cytokinins within the
whole plant also occurs at the riboside level. Ribosides
have been detected in the xylem sap of several species,
including Urtica {229), Phaseolus [179] and radish
[79]. After exogenous application of BA, [9R]BA was
found in senescing Xanthium pennsylvanicum leaves
as a major product [134]. Such evidence strengthens
the view [94, 121] that the riboside is a translocatory
form which is exported along with other important
compounds from leaves prior to senescence. Follow-
ing supply of "“C-BA to Phaseolus vulgaris plant roots,
cnly (9R]BA was detected in xylem sap collected from
the stem [179]. Similarly, the riboside was the only
significant source of radioactivity in the xylem sap of
radish seedling after application of '*C-Z [79]. These
findings indicate that translocation of cytokinins from
the roots is in the riboside form. Notably, ribosides
are also major cytokinins in the phloem sap [121],
indicating that the transport of ribosides may also be
transported from shoots to roots.

A storage function for nucleosides has also been
implied. A cytokinin riboside ([9R]Z) was detected
in the (storage) roots of chicory by Bui-Dang-Ha and
Nitsch [25]. It was not determined whether this riboside
was synthesised in situ or merely stored there.
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4. Benzyladenine-nucleotide-[9R-MP]BA

Following application of BA, [9R-MP]BA has been
identified as a metabolite of BA in Lemna minor {16]
soybean callus [70] and in Acer pseudoplatanus cell
cultures [47]. The monophosphate of BA is relatively
stable, as shown by its metabolic half-life in tobacco
cells (8 days) [105]. In other systems which initially
produced cytokinin mono-nucleotide as the principal
metabolite, levels rapidly became subdominant [79].

Laloue and Pethe ({104] considered cytokinin
riboside-5'-phosphates to play a central role in the
regulation of the levels of the various metabolic forms
of cytokinins as they are readily interconverted to the
riboside, and to the base. A role for cytokinin mono-
nucleotides in hormonal homeostasis is generally
accepted [164]. The main feature of inter-conversion
pathways in this active cytokinin pool is that their
overall equilibrium is thought to be in favour of
nucleotide formation [105], although such conver-
sion may invoive a steady state maintenance of base
and riboside levels [104]. Support of this homeostatic
notion is provided by the fact that when cytokinin-
dependent soybean callus was fed [9R-MPJZ [221],
only the corresponding base and nucleoside were pro-
duced [104]. Laloue et al. [105] claimed that nucleotide
isolation and identification has been neglected. These
workers proposed that more attention should be paid
to ribotides as naturally occurring cytokinins with a
central role. A later report by Scott and Horgan [184]
which employed mass spectrometric techniques has
shown that cytokinin nucleotides may be more abun-
dant than has been previously shown. These authors
demonstrated that the nucleotide is more abundant than
the ribosides in tissues where this was previously seen
to be otherwise. Scott and Horgan {184] predicted
that the application of ‘new analytical techniques
for cytokinin nucleotides will result in an extensive
re-evaluation of the existing cytokinin literature’. Such
a re-evaluation has not yet occurred.

According to Ashihara (8], purine nucleotidase
are synthesised both from i.e. the de novo pathway
amino acids, CO,, tetrafolate derivatives and a-
5-phosphoribosyl- 1 -pyrophosphate (PRPP) and from
preformed purine bases and their ribonucleosides
(the salvage pathway). Nothing is known of BA
biosynthesis in plants {99]. Should biosynthesis of 6-
(benzylamino)purine proceed at the nucleotide level,
as suggested for iso-pentenyl-type cytokinins [121.
2011, then [9R-MPIBA will likely play an essen-
tial role as an intermediate precursor in those tissues

where naturally-cccurring BA metabolites are known
to occur [197). However. in this cytokinin there is a
benzyl ring attached at the ®N-position of adenine. This
makes it unlikely that iso-penteny! transferase would
be involved. It seems that a common biosynthetic path-
way may not exist for iP and BA cytokinins.

Once in the active pool, the nucleotide may exist via
the base or the riboside to N-conjugates, or oxidative
catabolites. {SR-MP]BA has been implicated as the
immediate precursor of [7G}BA in tobacco systems
{71]. Conversely, {7G]BA applied to tobacco was
(indirectly) convented to BA nucleotides [77]. These
authors suggested that such a conversion is indirect,
via the transient formation of BA. As with the other
cytokinin species which contribute to the active pool,
the exact role(s) of nucleotides remains to be fully
elucidated.

Nucleotides have been associated with storage of
cytokinins {121, 209]. Pietraface and Blaydes [177]
provided evidence to show that the nucleotide is a
storage from in lettuce seeds before conversion to the
active nucleoside.

Nucleotide formation may also be associated
with cytokinin uptake [164] and transport across
membranes, in much the same way as phosphori-
bosylation plays a role in the uptake of adenine by
Escherichia coli membranes [121]. Burch and Stuch-
bury [27] noted that although polar cytokinins such
as nucleotides are common metabolites within cells,
they have rarely been identified in the culture media.
This has been considered indicative of plasmalemma
impermeability to {SR-MP]BA [104, 105]. However,
following incubation of [FIR-MP]Z with soybean
callus, various zeatin metabolites were extracted from
cellular contents. High levels of {9R-MP]Z detected
in artichoke tissues shortly after the start of culture
was cited as evidence [164] that the nucleotides are
involved in cytokinin uptake. Yet, with the aid of
adenine phosphoribosyltransferase-deficient (APRT)
mutants, Moffatt et al. {145] have recently shown that
phosphoribosylation of BA is not a prerequisite for its
uptake by Arabidopsis plants.

A translocatory role for this cytokinin class has

been proposed. Free base applied to bean roots was .

recovered in the stem, partly as the nucleotide {232].
Both ribosides and ribotides were identified by Palmer
et al. [163] in stems of decapitated, disbudded bean
plants. Vonk and Davelaar {228] suggested that the
nucleotides are cytokinins in transport in the phloem.
The highest levels of [9IR-MP]BA detected in tomato
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plants were in the sterns [14], again implying a translo-
catory role.

Shaw et al. [189] considered the cytokinin activity
of the 3-, 7-, and 9-methyl derivatives of zeatin.
The results implied that the mechanism of cytokinin
activity in substituted adenines does not require prior
formation of nucleotide derivatives. In contrast, Laloue
et al. [105] correlated division of cytokinin-requiring

tobacco cells with high levels of cytokininribotides and *

low levels of cytokinin base and riboside, irrespective
of whether the base or riboside was supplied. The fact
that the methyl group in the 9-position does not consti-
tute aneffective block, but iseasily metabolised, makes
suspect the presumed stability of other 9-substituted
cytokinins [73]. When compared in the tobacco callus
bioassay, [9JR]BA and [9R-MP]BA were less active at
lower concentrations (10! pM) than BA [183]. More
recently, similar results were obtained using the soy-
bean callus bioassay (219].

The identity of the actual ‘active cytokinin’ form(s)
remains an unresolved issue. The nucleotide may be
necessary for the expression of activity [105], but if
not, is likely to contribute to the steady state mainte-
nance of an active cytokinin pool.

5. Di- and tri-phosphates of benzytadenine
(ISR-DP]BA and [9R-TP]BA)

The di- and tri-nucleotides of BA have been detected
inextracts of Petunia leaves following incubation with
BA (10, 11, 12]. These metabolites were rapidly pro-
duced by the explants and were considered by these
authors to be active forms responsible for shoot induc-
tion. An earlier indication of the activity of cytokinin
polynucleotides was revealed by Miller {140]. This
author extracted a cytokinin from Zea mays kernels
possessing ‘at least two phosphate groups’, which
showed some activity in a soybean callus bioassay.
Bezemer-Sybrandy and Veldstra [16] detected mono-,
di, and tri-nucleotides of BA as metabolites in Lemna
minor cultures. The formation of such nucleotides
was considered to be a normal fearure of cytokinin
metabolism in plant tissues {140, 206), and to indi-
cate the natural occurrence of analogous endogenous
nucleotides in plant tissues [106].

The existence in vivo of cytokinin nucleoside-
5'-triphosphate is of theoretical importance as such
compounds could be incorporated into RNA molecules
{69, 106] to provide a basis for cytokinin action. [ncor-
poration of BA into RNA was demonstrated by Fox

N
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(68]. Armstrong et al. [S] similarty viewed [9R-TP]BA
as an important intermediate in a pathway for the incor-
porationof BA into RNA species. The incorporation of
cytokinin bases into polynucleotides [33] indicates that
the 5'-monophosphate is an intermediate metabolite in
the reaction. Preferential incorporation of label into the
guanine fraction of soluble RNA hydrolysates from
soybean and tobacco callus cultured cn media con-
taining "*C-BA was recorded by Fox [69]. In soybean
callus, [9R-MPIBA appeared as the major metabo-
lite (70]. Cytokinin-dependent tobacco callus supplied
with BA incorporated this compound in low levels in
both tRNA and rRNA though mainly in the rRNA [3].
Jouanneau and Teyssendier de la Serve (98] considered
this to occur through a direct insertion process. Despite
the large number of BA metabolic studies in plant
tissues, detection of di- and tri-nucleotides has rarely
been reported. When identified, these compounds
are normally minor metabolites [106]. Acer cultures
supplied with N°-substituted nucleosides did not
phosphorylate these compounds beyond the mono-
phosphate level [47, 48]. In contrast, 3 hours after
application of '*C-BA to tobacco cell culwres, 6% of
the' radioactivity was associated with {SR-DPIBA and
[9R-TP]BA [106]. The monophosphate ({[IR-MP]BA) .
represented 28 %, the base 30% and [SR]BA wasunrep-
resented. To explain differences in the metabolism of
BA observed between Acer and tobacco, Laloue et al.
[106] suggested that the cytokinin inactivation through
sidechain cleavage noted for Acer {47] would restrict
formation of the di- and tri-nucleotides.

The hydrolytic action of 5'-nucleotidases which
show equal affinity for mono-, di- and tri-phosphates
of adenosine [35] are likely responsible for release
of [9R]BA from [9R-DP]BA and [9R-TP]BA. Such
a conversion could produce a more active cytokinin
species, either in the form of {9R]BA, or after deribo-
sylation of [9R]BA to the base.

6. N-conjugation of BA

Collectively, the N-alanyl conjugates and N-glucosides
of cytokinins are referred to as N-conjugates.
N-conjugates are stable both when applied exter-
nally and when found as metabolites [170, 173] and
are generally incapable of further metabolism back
to base [136, 138]. For this reason N-conjugates are
regarded as detoxification or inactivation products {77.
121] rather than storage forms; a role propesed for the

g 6>
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O-glucosides of zeatin [75]. Hence N-conjugation may
result in the trreversible loss of cytokinin activity.

In reducing levels of cytokinin activity, plants
may oxidise the ‘active compound’ {198}, or alterna-
tively glucosylate/alanylate. McGaw and Horgan [138]
distinguished an ‘oxidative-type’ metabolism from
a ‘gluccsidase-type’ metabolism to describe either
oxidative cleavage of the N°®-sidechain, or conju-
gation of exogenously supplied cytokinin. In many
tissues BA is resistant to attack by cytokinin oxidase.
Consequently, N-conjugation may provide the only
mechanism by which the biological activity of this
cytokinin might be controlled. Side-chain cleavage of
N-conjugates [168] may be a means of reducing still
further the activity of these detoxification products.

7. Benzyladenine - Metabolism

Although application of a cytokinin metabolite to a
bioassay system may promote an active response, each
of these ‘active’ compounds are themselves rapidly
metabolised to an extensive range of products, many
of which are active to varying degrees in the same
bioassay [219]. Mok et al. [146] observed that the
activity of a particular cytokinin may depend on the
bioassay system used. Activity differences between
metabolites were attributed by these authors to reflect
uptake, compartmentation, sensitivities to enzymes, or
binding site specificities. In different bioassays these
components may change, so altering the effectiveness
of particular metabolites in inducing a response. In an
alternative experimental approach, studies of endoge-
nous cytokinin levels during different phases of plant
growth {176] have provided insight into in vivo biolog-
ical activity. the manipulation of endogenous cytokinin
levels by genetic transformation has aiso been consid-
ered more useful in revealing natural processes than
exogenous applications to isolated organs or calli {3,
82].

Plant tissues convert exogenous BA into a great
diversity of metabolites which include products of ring
substitution (ribosides, nucleotides, N-glucosides),
and products of sidechain cleavage (e.g. adenine,
adenosine, and adenosine-5'-monophosphate [121].

The functional significance of these metabolites
remains obscure [229], but it has been suggested [121]
that these compounds could be:

I. Active forms of cytokinin, i.e. the molecular
species which bind to a receptor to evoke a growth
or physiological response;

2. Translocation forms:

3. Storage forms which would release free (active)
cytokinin when required;

4. Detoxification products formed following exoge-
nous cytokinin application at toxic levels;

5. Deactivation products formed to lowerendogenous

(active) cytokinin levels; and

6. Postactivation products, formation of which is
coupled with cytokinin action (formed as a result
of cytokinin utilisation).

McGaw and Horgan [138] indicated that an under-
standing of compartmentation with respect to the
mechanisms and sites of cytokinin action needs to
occur before the exact roles of various cytokinins may
be assigned. Until this knowledge is obtained and activ-
ities can be measured directly at the site of action [146]
prescribed roles will remain mainly speculative.

Chen [32] considered fundamental control mech-
anisms to be those operating at the level of
enzymic regulation of metabolism (biosynthesis, inter-
conversion, and degradation). Several major enzymic
pathways compete for cytokinins, by which they
are inter-converted and degraded [32]. Burch and
Stuchbury [27] noted that enzymes metabolising
adenine derivatives {34, 35, 38] exhibit a low degree
of specificity for the exact structure of the purine ring
and hence the same enzymes will actively metabolise
many N%-substituted cytokinins albeit at different rates.
The fate of a cytokinin may be attributed to the rela-
tive activities of cytokinin metabolic enzymes, which
in turn are affected by the relative concentrations
and distribution of the hormone and its precursors
in the plant cell [32]. Given the lack of specificity
of some cytokinin-metabolising enzymes, metabolism
of cytokinins may be limited by competition for the
enzymes. Hence Burch and Stuchbury [27] stated that
‘interpretation of many aspect of cytokinin biochem-
istry is dependent on a much better understanding of
the relationship of their metabolism to that of other
purines’. Much is known of cytokinin metabolism, but
no common metabolic pattern has emerged. Several
factors may have contributed to this complexity. The
stage of plant development [27,43, 119], physiological
condition (75, 162}, organ type [14, 27], plant species
used [20], concentration of supplied compounds {213].
and method of application [223] have all been shown
to have an effect on the metabolism of exogenous and
endogenous cytokinins.
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7.1 Inter-conversion within the active cytokinin pool

The free base. nucleoside and mononucleotide forms
of cytokinins all appear to be readily inter-convertible
in plant tissues [121, 2{5]. These cytokinin species
are considered the functional forms (126]. The early
formation of the 9-riboside ([9R]BA) and 9-ribotide
of BA ([SR-MP]BA) by many systems as the principal
metabolitesof BA [12, 72, 126, 158,220, 223] could be
a mechanism for maintaining an active cytokinin pool.
This would ensure a continued supply of precursors
for subsequent conversion o the base (or active form).
Di- and tri-nucleotides of cytokinins do not appear to
contribute significantly to this active pool [106].

Should the biosynthetic pathway for BA, like
that for 6-)3-methylbut-2-enylamino)purine (iP) pro-
ceed at the nucleotide level [201] then subsequent
conversion to base and riboside would be expected.
Cytokinin bases can be continuously catabolised by
various enzymes to form adenine and other degra-
dation compounds [67, 134}, resulting in a loss of
cytokinin base. Such a loss may need to be replenished
in order to maintain the levels of available cytokinin
(the so called ‘active form’) {34]. De-glucosylation
[65], de-alanylation [239], deribosylation {34}, and
de-phosphoribosylation {221] would provide the
needed cytokinin base.

The enzyme catalysing inter-conversions within the
active pool are likely not cytokinin-specific, but rather
those which catalyse analogous reactions for adenine,
adenosine, and AMP {121, 145]. Other workers [221]
have viewed such enzymes as cytokinin-specific.

Burch and Stuchbury [27] listed a series of reactions
and the enzymes responsible for their inter-conversion
(Table 1). The analogous conversions of the cytokinin
6-(benzylamino)purine are also shown.

Two mechanisms for the incorporation of purines
into nucleotides have been proposed:

1. A two-step process involving first nucleoside phos-
phorylase 1o yield a cytokinin riboside and then
adenosine kinase to catalyse nucleotide formation.

2. A one-step process involving a direct transfer
of a ribose-5!-monophosphate group from «a-5-
phosphoribosyl- | -pyrophosphate (PRPP) to the
base, catalysed by an adenine phosphoribosyl-
transferase.

A one-step phosphoribosylation is not universally
accepted. Evidence exists to support both the one-step
{47, 104] and two-step [216] pathways. The two-step
route may be limited by the restricted occurrence of
nucleoside phosphorylase, rather than by adenosine
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kinuse activity. which appears ubiquitous in plants
{48].

1.2 Conversion of benzyladenine 1o its riboside (BA
— [9R]BA)

Ribonucleosides have been shown to be formed in
plant tissues when the corresponding base was suppiied
(193]. The significance of adenosine phosphorylase
activity in purine salvage reactions has been the subject
of considerable debate. Phosphoribosylation catalysed
in a single step by adenine phosphoribosyltransferase
(APRT) is viewed as the main pathway {109]. How-
ever, in APRT-lacking mutants of Arabidopsis, limited
formation of [9R-MP]BA revealed some activity of the
two-step reaction involving adenosine phosphorylase
[145].

Although detected in Bacterial systems {90, 188],
the occurrence of adenosine phosphorylase in plants
was initially questioned (48], and is still viewed by
some researchers {27] as limited in distribution. This
enzyme was purified from wheat germ cells by Chen
and Petschow [39]. Conversion of the base to the ribo-
side requires the addition of ribose-1-phosphate. In
the presence of inorganic phosphate,phosphorolysis of
nucleosides occurs [32, 188]. However, Chen and
Petschow [39] noted that the equilibrium constants
for the phosphorolysis of [9R}iP and iP indicate that
nucleoside formation is in the favoured reaction. Chen
[32] suggested that purine nucleoside was the enzyme
catalysing cytokinin nucleoside formation, as distinct
from purine nucleoside phosphorylase which is gener-
ally considered to be inactive towards Ade, Ado, and
cytokinin nucleosides [242]. Senesi et al. {188] were
the first to clearly distinguish adenosine phosphorylase
from purine nucleoside phosphorylase. Adenosine was
not a substrate for purine nucleoside phosphorylase,
unlike the nucleosides of hypoxanthine and guanine.

7.3 Conversion of BA riboside to its base ([9R]BA —
BA)

Formation of the base may involve a deribosylation
of the free riboside {105, 208] or may be the result
of a direct (reversible) dephosphoribosylation of the
nucleotide [139]. Cytokinin base has been reported as
a metabolite formed from the nucleoside {139, 213].
and may represent an activation step [180].

The products of the hydrolytic nucleosidase from
Lactobacillus pentosus was shown [231] to be the
purine, and free ribose. The enzyme was not expected
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Tuble | Inter-conversion within the active vytokinin pool, catalysed by non-specihc enzymes of adenine metabolism

Enzyme Class Reaction catalysed for Ade Analogous BA conversion
5'-nucleondase EC3.135 AMP + HO — Ado + Pi [9R-MPIBA + H:0 — [9R]BA + P1
Adenosine nucleotidase EC3227 Ado + H;0 — Ade + nbose  {9R]BA + H;0 — BA + ribose
Adenine phosphonbosy| transferase  EC 2.4.2.7 Ade + PRPP — AMP + PPi BA + PRPP — (9R-MP]BA + PPi
Adenosine phosphorylase EC2.42. Ade +R-1-P — Ado + Pi BA +R-1-P — [9R]BA + Pi
Adenosine Kinase EC2.7.120 Ado+ ATP — AMP+ ADP  [9R]BA + ATP — [9R-MP|BA + ADP

Pi ~ inorganic phosphate; PPi — inorganic diphosphate; R- | -P — ribose- | -phosphate; PRPP ~ o-S-phosphoribosyl- | -pyrophosphate;

Ade - Adenine; Adenosine - Adenosine.

to exist because of the wide distribution of the
phosphorolytic nucleosidase in animal tissues and in
micro-organisms. Whitty and Hall [234] termed this
enzyme isolated by Wang [231] ‘purine nucleoside
hydrolase’.

Adenosine nucleosidase catalyses the irreversible
deribosylation of Ado, to give Ade and ribose [26].
Three separate adenosine nucleosidase enzymes were
partially purified from tomato roots and leaves [26].
These workers found the conversion of Ado to Ade to
be inhibited by the presence of [9R]BA, with substan-
tial differences in the pattern of inhibition evidenced
for each of the three enzymes. Earlier, Chism et al.
[40] distinguished between cytokinin nucleosidases
and adenosine nucleosidases in tomato fruits. When
the N®-amino group of Ado was replaced by an isopen-
tenyl amino sidechain in substrates of adenosine nucle-
osidase, the K, value of the reaction was decreased by
a factor of 1.7 [34]. The cytokinin base, BA, appeared
a suitable substrate in this reaction, as the adenosine
nucleosidase exhibited a specificity for Ado and N°-
derivatives of Ado. From wheat germ cells, a partially
purified adenosine nucleosidase (EC 3.2.2.7) catalysed
the irreversible hydrolysis of the riboside of iP ([9R1iP)
to iP, and adenosine to adenine {32, 39]. The activity of
such adenosine nucleosidases appears to depend on the
plant tissue investigated {159, 203]. Significant differ-
ences in adenosine nucleosidase activity were detected
between wild-type and domesticated plant species
[116].

Adenosine nucleosidase activity has also been
detected insoybean {142], beet [172], and barley leaves
[81].

7.4 Conversion of benzyladenine riboside 1o its
nucleotide ([IRJBA — [9R-MP]BA)

Enzymic preparation of mono-nucleotides from N°-
substituted adenosines and ATP is catalysed by adeno-

sine kinase (EC 2.7.1.20). Such activity has been found
in both yeasts and higher plants (48]. Adenosine kinase
activity was demonstrated in buds of Cicer arietinum
and in suspension-cultured cells of Acer pseudopla-
tanus.

Time course studies with Phaseolus vulgaris [179]
and Dianthus caryophyllus [216], have indicated
formation of cytokinin nucleotides from the corre-
sponding nuclecside. More direct evidence was
provided by Chen and Eckert (33] who reported
that cytokinin nucleoside could be converted to the
nucleotide (5'-monophosphate) by adenosine kinase
isolated from wheat germ cells. The phosphorylation
of [9R]iP depended upon the presence of ATP and
Mg**. The enzyme activity respensible for such syn-
thesis was considered by Doree and Terrine [48] to be
ubiquitous in plants.

7.5 Conversion of benzyladenine nucleotide 10 its
riboside ([9R-MP]BA — [9R]BA)

Following application to soybean callus, [9R-MP]Z
was rapidly metabolised to both the riboside and the
base [221]. Ribonucleosides can be formed from the
corresponding ribonucleotide or from the cytokinin
base [32, 191]. Should the one-step pathway of
nucleotide synthesis be dominant, then conversion
of applied cytokinin base to the riboside may pro-
ceed through phosphoribosylation of the base to the
nucleotide, followed by conversion to the riboside {39].

Conversion of cytokinin ribonucleotide to its nucle-
oside may be catalysed by 5'-nucleotidase [35].
Such conversions have been indicated by time-course
studies [130] and demonstrated during in vitro inves-
tigations [32]. This cytosolic enzyme consists of
at least two forms, referred to as the F-1 and
F-2 5-nucleotidases, which specifically hydrolyse
purine ribonucleoside-5'-phosphates [32]. Notably.
5'-nucleotidases have been reported {35] to show
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almost equal affinity toward the mono-. di- and
tri-phosphates of adenosine (AMP, ADP and ATP).
The extent of dephosphorylation of cytokinin ribonu-
cleotide in plant cells by acid phosphatase and
membrane-bound 5'-nucleotidase remains to be inves-
tigated {35].

7.6 Conversion of benzyladenine to its nucleotide
(BA — [9R-MP]BA)

Quick metabolism of base to nucleotide has been
demonstrated for both lower [63] and higher plants
{79, 139]. A one-step purine salvage reaction catalysed
by adenine phosphoribosyltransferase (APRT) is seen
as the predominant pathway in plants {139, 143], as
this enzyme activity is high enough to account for the
salvage of Ade into AMP. Further, some researchers
{109] maintain, despite the work of Chen and Petschow
[39], that the presence of adenosine phosphorylase
in plants has not been unequivocally demonstrated.
From a time-course study on Acer pseudopla-
tanus cell culture, Doree and Guern [47] provided
evidence to show that the synthesis of N°-substituted
nucleotides does not proceed through a two-step
reaction, but rather through the direct transfer of ribose-
5'-monophosphate. 6-(Benzylamino)purine was a
suitable substrate.

Extracts from soybean (cv. Acme) similarly yielded
APRT activity, as did senescing barley leaves [157].
This enzyme from soybean was inhibited by AMP
(product feedback inhibition), and stimulated by ATP.
The monophosphate of BA ([SR-MPIBA) was also
found to inhibit AMP production, though not to the
same extent (13 vs. 92%). Soybean callus contact-
ing kinetin in the agar medium was shown to have
increased APRT activity (157].

Adenine phosphoribosyltransferase has been parti-
ally purified from tobacco pith tissue cultures {33], and
from wheat cells [32]. This enzyme was also extract-
ed and partially purified from Jerusalem artichoke
shoots (111, 112]. Phosphate ions and thiol-reducing
substances were required to stabilise it.

However, Chen [32] showed that in wheat germ
cells, cytokinin nucleotide is not preferentially formed
by this one-step pathway as iP has a high K, value.
Krentisky et al. {101] had earlier reported that the
enzyme binds to adenine through the 6-amino group
and the 3- and 7-nitrogens. Chen [32)] was thus not sur-
prised to find iP (an adenine analogue with a modified
6-amino group) to show reduced ability as a substrate.
It was suggested that a different form of this enzyme
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may exist for cytokinin bases in wheat. A later inves-
tigation revealed that APRT from the cytosol of wheat
germ was capable of phosphaoribosylating BA (38].
However, the ratio of V:K,, indicated that adenine is
approximately two-fold more efficient than BA as a
substrate. Lee and Moffatt [109] have more recently
purified and characterised an APRT from Arabidopsis
thaliana which catalysed phosphoribosylation of BA.
However, it was again not possible to fully resolve the
physiological role of APRT with respect to BA.

In summary, the base, riboside and nucleotides of
cytekinins appear to be readily inter-convertible with-
in plant tissues. Enzymes responsible for catalysing
these reactions are not likely to be cytokinin-specific,
although in some tissues specific enzymes may be
present [40]. The extent to which one-step or two-step
phosphoribosylation of cytokinin bases occurs appears
to be a function of the plant system investigated.

8. Benzyladenine glucosides

The metabolites of BA include a group of N-glucosides
in -which the sugar moiety is linked to a purine
ring nitrogen atom. These are [3G]BA, [7G]BA
and [9A]BA, of which the 3- and 7-glucosides are
considered to be particularly unusual [12]. Trans-
glycosylation reactions in which glucose is transferred
enzymically from a glucoside to the free base BA to
yield a different glucoside have not yet been reported
[119].

Cytokinin O-glucosides, where glucose is substi-
tuted in the N%-sidechain of a molecule such as (20H)
BA, have not been observed for BA, as they have for
zeatin [91]. The O-glucosidic linkage in such com-
pounds as (OG)Z and (OG)DHZ confers a greater
liability to acid and 3-glucosidase hydrolysis [166,
212, 219, 225] than has been observed with any N-
glucosidic bonds. As a result, O-giucosides probably
serve as translocatory {210, 217] and storage forms
(75, 211], unlike the more stable N-glucosides. As the
presumed roles of these two glucoside types funda-
mentally differ, analogies which may be made are
limited. Accordingly, cytokinin-O-glucosides are not
currently reviewed. However, it is noteworthy that
not only glucose, but xylose has also been identified
(from Phaseolus vulgaris embryos) as a cytokinin con-
jugate ((OX)Z) {147, 149]. Tumer et al. {205] isolated
and partially characterised the enzyme (UDP xylose:
zeatin-xylosyl transferase) catalysing such conjuga-
tion, and showed its specific requirements for UDP-
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xyvlose. To date. cytokinin-O-xvlosides have only
been detected in members of the family Legumninosae.
Should the natural occurrence of an O-glucoside of
(20H)BA or (20H){SR1BA be indicated. then the exis-
tence of analogous O-xyloside of BA in selected plant
species is concetvable. In this regard, the finding
of (20H)(9R]BA in Populus x robusta [94] and the
recent identification of (20H)BA as a natural cytokinin
[197] makes the hypothetical existence of (QG)BA and
(OX)BA more feasible.

Both [7G]BA and [9G]BA have been confirmed by
synthesis [41], 10 be 3-D-glucopyranosides. Parker et
al. [175]} considered the identification of the gluco-
sides of zeatin and BA to be the first unequivocal
evidence for the occurrence of purine glucosides in
living tissues. Letham et al. {124] later demonstrated
that glucosylation of such purines is not restricted
to only NS-substituted adenines with strong cytokinin
activity.

Cytokinin N-glucosides have not been detected in
xylem sap, and hence are apparently not supplied to
the leaf from the root {50]. These N-glucosides are
much less active in bioassays than the O-glucoside or
the parent molecule {88, 118, 220]. They have alterna-
tively been described as having ‘enhanced metabolic
stability’ {96, 126, 173]. If these metabolites are
the functional form of BA, then they would proba-
bly exhibit high cytokinin activity. The stability of N-
glucoside metabolites is possibly due to their resistance
to degradative enzymes [127] or to their compartmen-
tation [126].

Letham et al. [126] found that formation of the 3-,
7- and 9- glucosides of BA was not dependent on BA
concentration, in which case formation of the metabo-
lites may not simply be a mechanism for inactivating
physiologicalexcesses of BA. Similarly, the rate of BA
glycosylation in radish cotyledons [126] and tobacco
cells {77] was found to be relatively insensitive to large
differences in the concentration of supplied BA [165].

Entsch and Letham (58] claimed that the phys-
iological significance of the 7- and 9-glucosides of
cytokinins is uncertain, although it has been suggested
{170} that they are storage forms of the hormone
rather than the product of a detoxification pathway
{77]. Entsch et al. [62] proposed that cytokinin gluco-
sides may simply be waste-products formed by glucose
transferases, which catalyse the formation of glucoside
metabalites characteristic of a particular species. In

summary. the significance of cytokinin metabolite for-
mation, in particular glucosylation. has been variously
associated with a detoxification mechanism. a method
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of storage, and a mechanism for lowering endogenous
cytokinin levels [193].

8.1 The 3-glucoside of bezyladenine ~ {3G]BA

When supplied to de-rooted radish seedlings, BA
was principally converted to 7-, and 9-glucosides. A
third minor metabolite exhibited cytokinin-like activity
markedly greater than that of these glucosides [235].
It'was identified {127] as the first compound with a
glycosidic linkage at position 3 of a purine ring to be
isolated from a plant tissue. This compound was 6-
benzylamino-3-3-D-glucopyranosylpurine ([3G]BA).
The 3-glucosides have not been isolated as endoge-
nous cytokinins from any source, aithough [3G]DHZ
appeared as a minor metabolite when DHZ was exoge-
nously applied to de-rooted radish seedlings {136].
Letham et al. {122] considered a number of
cytokinin bioassays and compared the activities of
3-, 7- and 9-glucosides of BA. Cytokinin activity was
markedly reduced by 7- and 9-glucosylation in nearly
all bioassays, but 3-glucosylation of BA had little
effect on activity. The 3-glucoside of BA, produced
as a minor metabolite of BA in Dianthus caryophyllus
flowers, showed higher senescence-delaying activity
than either the 7- or $-glucosides [216]. Since 3-alkyl
derivatives of BA are essentially inactive [192], the
high activity of [3G]BA indiverse bioassays [122, 174,
220} is probably due to cleavage of the 3-glucoside
moiety to release free BA. Such cleavage has been
demonstrated in radish cotyledons {119, 126] and soy-
bean callus {220]. The 3-glucoside of BA supplied
to cytokinin-dependent soybean callus was rapidly
metabolised to mainly BA, and another unidentified
bicactive compound [220]. Release of appreciable
amounts of BA from [3G]BA was considered by
Letham and Gollnow [119] 1o account for the high
activity of this glucoside in cytwokinin bioassays. The
3-glucoside has been shown susceptible to hydrolysis
by almond f3-glucosidase [127, 174, 220]. The 3-
glucoside is hydrolysed slowly by this enzyme whereas
the 7- and 9-glycosyl metabolites of BA are not
hydrolysed at a detectable rate by either a- or -
glucosidase [174]. Of the three N-glucosides of BA,
[3G]BA was the most readily hydrolysed by acid
[220]. These authors proposed that if steric factors
cannot adequately explain the greater lability of the
N-C glucosidic bond of [3G]BA in the presence of
3-glucosidase, then compartmentation of the various
glucosides may differ. The enzyme(s) responsible for
{3G]BA formation have not yet been characterised.
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Although more active than [7G|BA and [9G]BA as
acytokinin, [3G]BA is still only weukly active relative
to the corresponding base when applied at physiolog-
ical levels in bioassays [220].

3.2 The 7-glucoside of benzyladenine - {7G]BA

Raphanatin ([7G]Z) was the first purine glucoside to
be identified {170]. It was earlier isolated from radish
cotyledons by Parker et al. [172] who reported on its
activity in the radish cotyledon bioassay. Prior to the
report by Parker and Letham [170], Deleuze et al.
[46] had isolated the 7-glucoside of BA from sliced
potato tubers and based on spectral evidence, pro-
posed a glucofuranosy! structure. The glucose ring size
and stereochemistry of the sugar linkage of [7G]BA
was later investigated {51] and found to be a 7-5-
glucopyranoside. Similarly, although Fox et al. [71]
reported on the existence of the 7-glucofuranoside of
BA in potato tuber tissue, this was later shown [120]
to be the pyranoside. The 7-glucoside of BA ([7G]BA)
has been shown to be the major metabolite in tobacco,
another solanaceous species [77, 207].

The base appears to be the precursor for 7-
glucosylation, as expected from the consideration of
the 7- and 9-tautomeric positions of the purine ring,
although kinetic swdies indicated that the ribonu-
cleotide is the immediate precursor {71].

The roles of cytokinin-7-glucosides in controlling
hormone activity remain unclear. the 7-glucosides of
cytokinins are metabolically stable {77, 170], and
weakly active relative to the unsubstituted cytokinin
(103, 235]. McGaw and Horgan [138] considered
[7G]BA as a deactivation or detoxified cytokinin
form, which was biologically inactive. Laloue et al.
[105]} considered 7-glucosylationof BA as a (terminal)
inactivation step as its formation was ‘practically irre-
versible’ and the rate of reutilization extremely slow
{77]. When the amount of {[7G]BA present in tobacco
cells did not increase proportionately following further
addition of BA, Gawer et al. [77] reasoned that 7-
glucosylation formation may not be a detoxification
step.

[n contrast to the proposed terminal inactivity
of [7G]BA, several researchers have viewed the 7-
glucosides as storage forms of cytokinins {103, 104,
119, 170]. Laloue {103] suggested that they are storage
forms as they are stable with respect to degrada-
tion that occurs upon N°-sidechain removal {105] and
because they can be converted to cytokinin nucleotides
[77]. These authors suggested that this conversion is

B T e IR

163

indirect. via the transient formation of BA. As -
glucosidases do not substantially. hydrolyse {7G|BA,
then the existence of an enzyme which removes the
glycosyl moiety at position 7 of the purine ring
and simultaneously attaches a phosphoribosy! group
should be considered.

Letham and Gollnow [119] suggested that the
cytokinin-7-glucoside of zeatin may be a translocation
and a storage form, given its resistance to degrada-
tion, its production at sub-optimal levels (hence not a
detoxification form), and movement in radish seedlings
(1261

Laloue (103] considered the effect of (7G]BA
on cell division in suspension cultures of Micotiana
rabacum. He found that cytokinin-7-glucosylation was
notinvolved in the expression of the biological activity
of cytokinins. This report conflicted with the view of
Fox et al. [71] who considered cytokinin-7-glucosides
to be the ‘active forms’, as this metabolite was the
only cytokinin species containing the intact cytokinin
moiety that remained in actively growing cytekinin-
requiring tobacco tissue in the long term. These authors
had reasoned that as [7G]BA was notdegraded through
sidechain cleavage, the 7-glucoside may thus be the
active form of the cytokinin. Additionally, substantial
growth was detected in the soybean callus bioassay.

Soybean callus degraded [7G]Z to [7G]Adenine
[168], showing that oxidation of [7G]BA may in fact
occur. McGaw and Horgan {138] found that {[7G]Z was
metabolised to adenine, adenosine and [7G)adenine
within twa days. By inference, one would expect
[7G]BA to be susceptible to 3-glucosidase, although
this has not yet been demonstrated. Van Staden and
Drewes [220] later showed very little degradation
by this enzyme, much less than for the more labile
[3G]BA.

The lack of agreement on the biological signifi-
cance of cytokinin-7-glucosides highlights the confu-
sion surrounding most cytokinin metabolite roles. A
lack of uniformity with respect to systems investigated
and particularly bioassays employed, has probably
been a major cause for such apparent contradictions.
However, when one considers the wide array of
bio-responses elicited by cytokinins, the varied exper-
imental approaches are placed in context.

In summary, although early evidence permitted the
interpretation of [7G]BA as an active or storage form
of cytokinin, this compound is currently widely viewed
as an inactive product of deactivation or detoxification
mechanisms. This glucoside may be degraded further
to oxidation products.
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8.3 The 9-glucoside of benzyludenine — [9G]BA

Letham et al. {120] demonstrated the production of
[9G]BA by potato tuber tissue. A considerable amount
of this compound was found by Zhang et al. [241] to
be produced in soybean leaves. The 9-glucoside of BA
is a stable metabolite in radish cotyledons [235]. This
glucoside was detected by Van Staden et al. [216] as
a major metabolite in cut carnation flowers. Cytokinin
base (BA) supplied to the stems was later recovered
partly as [9G]BA in the stem, petals and receptacle.

The partially characterised cytokinin extract from
rice roots and presumed to be a 9-glucoside [237] is
more likely O-glucosylzeatin [91, 198, 230]. Follow-
ing this report, Letham {117] identified a $-glycoside
of zeatin from corn kernels, although the identity of the
sugar moiety was not established. Subsequently, the 9-
glucoside of zeatin was isolated as a major metabolite
from roots to Zea mays {171].

Oil palm Elaeis guineensis callus supplied with
kinetin produced [9G]KIN as the major metabolite
[97]. As oil palm cultures do not require added
cytokinins, these authors suggested inactivation of
an excessive cytokinin load had occurred. Jones and
Hanke {97] noted that in cytokinin-autonomous Elaeis
cultures, added cytokinins have not been shown to
improve callus growth. Cytokinin-9-glucosides may
then be formed in an inactivation or detoxification path-
way. Earlier reports [170] have considered {9G]BA to
be a storage form.

The stability of [9G]BA has been demonstrated:
[9G]BA is resistant to enzymic degradation by
Escherichia coli nucleoside phosphorylase and a
nucleoside hydrolase from Cicer arietinum, unlike
[9R]BA which was susceptible [80]. Van Staden and
Drewes {220] similarly found {9G]BA to be a stable,
inactive metabolite in soybean callus. When Guern
{80] and co-workers were experimenting with [9G]BA,
no purine glucosides were known to occur naturally.
Recently, [9G]BA has been identified as a naturally
occurring cytokinin [155].

When [9G]BA was injected into Cicer arietinum
seedlings, it was apparently readily translocated with-
out appreciable enzymic modification [80]. However,
cytokinin-9-glucosides have not been detected as
endogenous translocatory forms.

As [9G]BA is weakly active relative 10 BA [122,
219, 220, 235} specific inhibitors of the gluco-
sylating enzymes may constitute a mechanism for
elevating endogenous cytokinin levels. Although the
N-glucosides (7- and 9- particularly) are generally
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inactive forms of cytokinins {126]. [9G]BA has been
found similarly active to free BA in retarding the senes-
cence of radish leaf discs [122].

In summary, the generally low activity of [9G]BA
in a variety of cytokinin bioassays indicates that this
compound is probably an inactivation or detoxification
form.

8.4 The glucose-ribose conjugate ~ [9R-G]BA

A new hexose (probably glucose) conjugate of {9R]Z,
susceptible to #-glucosidase cleavage, was detected in
Douglas-fir (Pseudotsuga menziesii) {152}, Immuno-
affinity and mass spectral techniques indicated that this
compound is not (OG)[9R]Z. It was suggested that the
hexose moiety is attached to the purine ring or to the
ribose group. The latter position was favoured owing
to the ease of hydrolysis by §-glucosidase. However,
N-conjugation does not totally preclude hydrolysis by
[-glucosidase [221]. Earljer, Taylor et al. [202] had
detected a novel ribosyl zeatin glycoside which could
be the same compound further characterised by Morris
etal. [152], but in a different coniferous species (Pinus
radiata). These workers suggested that the hexose
moiety was glucose. Van Staden and Mallett {223] and
later Van Staden and Bayley [215] detected a gluco-
sylated form of [9G]BA following BA application t0
tomato shoots. Further structural characterisation of
this unknown metabolite was not artempted.

A disaccharide of BA, 6-(benzylamino)-9-(gluco-
sylribosyl)purine was identified by Blakesley etal.{21]
as the major metabolite in Gerbera jamesonii callus.
The exact position of the ribose-glucose linkage was
not determined. Unaware of the report on Gerbera,
Auer and Cohen [9] reported on [9R-G]BA forma-
tion in Perunia leaves, and proposed a linkage of the
ribose at the 3-position to glucose at the terminal (1)
position. Morris et al. [152] suggested a possible stor-
age role for this metabolite. In citing the observed
activity of [9R-G]Z in the soybean hypacoty! bicassay
[201]. Auer and Cobhen [9] suggested that [9R-G]BA
may contribute to the pool of inter-convertible active
cytokinins. As further circumstantial evidence, these
authors noted that [9R-G]BA formation was associ-
ated with increased shoot organogenesis in Petunia
explants.

The production of glucosylated ribosides of
cytokinins by plants of such diverse taxonomic relation
as the Pinaceae, Compositae and Solanaceae, indicates
that these compounds may be commonly and widely
produced by plants, albeit as minor metabolites.
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8.5 The benzyludenine ~ alunine conjugares
[9Ala]BA

Lupinic acid ([9Ala]Z). the alanine conjugate of zeatin,
was first identified in Lupinus angustifolia seedlings
[129], and later shown [{73] to exhibitonly very weak
activity in the radish-cotyledon cytokinin bioassay.
Lupinic acid was at that time “the only plant product
known in which an amino acid moiety is conjugated to
a nitrogen atom of the purine ring’.

A fraction ‘C’, isolated by Dyson et al. (54] from
soybean callus, was shown to be a stable, long-
lived BA derivative with cytokinin activity. This
compound was converted from 20-25% of the applied
BA and was metabolically related to [9R-MP]BA.
This metabolite was considered by Deleuze et al. [46]
to be 6-benzylamino-7-glucofuranosylpurine. Later
researchers [56] have questioned this earlier assump-
tion, believing the compound to be the alanine conju-
gate of BA.

Letham et al. [125] and Elliott and Thompson {56]
reported on the existence of [9Ala]BA in Phaseolus
seedlings and soybean callus respectively. This conju-
gate was found as the principal metabolite of BA in
soybean {24]. These authors considered [9Ala]BA to
be an inactivated form of BA. As {9Ala]BA showed
only slight senescence retarding activity, Letham et
al. [122] came to a similar conclusion. The use of
inhibitors of alanine conjugation {238] has provided
further circumstantial evidence to support this notion.
Zhang et al. [241] noted that derivatives of BA with a
slowly cleaved substituent at N-9 (1o yield free BA),
could be more effective than BA in exerting cytokinin
activity. Such a case may be when only one or a
few cytokinin applications are practicable for evok-
ing a response. In contrast to these observed activities,
[9Ala)BA at high concentrations was almost as active
as BA in the Amaranthus bioassay [122].

As BA is probably not a substrate for cytokinin
oxidase in all plant systems alternative inactivation
through N-conjugation may account for the accurnu-
lation of {3Ala]BA in soybean callus [122). Zhang
et al. [241] investigated the suppression of [9Ala]BA
formation in order to enhance the senescence retard-
ing activity of BA. Inhibition of [9Ala]BA formation
was accompanied by a greater degree of N°-benzyl
cleavage, associated with the production of adenine
and adenosine. Consequently, these authors suggested
thatr N®-sidechain cleavage and alanine conjugation are
alternative mechanisms for BA inactivation in soy-
bean leaves. The low cytokinin activity of the alanine
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conjugates is probably due to an inability of tissues
to readily cleave the alanine moiety and release free
cytokinin {122). The alanine conjugate of BA was
largely unmetabolised in soybean leaf discs; no BA
formation was detected {239]. However, zeatin was
shown to be released from [SAla}Z, which would
explain the observed minor activity of [9Ala)Z in
the soybean bioassay [168]. This raises the possibil-
ity that alanine conjugates are a further storage form
of cytokinin. Palni et al. [168] viewed the observed
stability of the alanine conjugate of zeatin to result
from its compartmentation, and therefore protection
against the enzymes involved in sidechain cleavage.

In soybean, rapid metabolism of BA to [FAla]BA
was confined to the first 24 hours after application,
and was associated with uptake of the supplied BA.
Letham et al. [122] hypothesised that remaining BA
may be sub-compartmented in the cell, separated from
the action of inactivating enzymes. Such is the extent
of alanine conjugation with BA in soybean leaves that
BA analogues have been found more effective than BA
in regarding soybean leaf senescence {240].

The question was posed by Letham et al. [125]
as: to whether alanine conjugates of cytokinins are
confined to the Leguminosae. This BA conjugate has
been identified from Phaseolus vulgaris {125], Glycine
max (56), Lupinus angustifolius {129}, and probably
Lupinus luteus [71].

9. Enzymes specific for N-conjugation of
cytokinins

With the exception of cytokinin oxidase {234] research
into enzymes of cytokinin metabolism had not been
reported until 1979. Entsch et al. (62] then reported
on the preparation of one of two isozymes from radish
cotyledons which glycosylated cytokinins.

Letham and Palni [121] cited three characterised
and purified enzymes known to show specificity
for cytokinins, namely cytokinin oxidase, cytokinin-
7-glucosyl transferase, and 3-(9-cytokinin)-alanine
synthase. Since this review was published, several
other cytokinin-specific enzymes have been identi-
fied. These include zeatin reducrase [131] and a
cis-trans-isomerase of zeatin [13]. The existence of
a ‘cytokinin-3-glycosidase’ has also been reported. as
has a cytokinin O-xylosyltransferase [203].

The metabolism of exogenously applied cytokinins,
including BA {21, 220] indicates the presence ot other.
as yet uncharacterised enzyme systems.
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9.1 Cytokinin-7-glucasy! rransferase

Radish cotyledon extracts yielded a single enzyme
system collectively known as cytokinin-7-glucosyl
transferase comprised of two enzymes/isozymes.
These converted BA into 7- and 9-glucosides when
uridine diphosphate glucose (UDPG) was supplied
as a glucose donor [58, 60]. Cytokinin-7-glucosyl
transferase produced the two glucosides in different
proportions; the major isozyme favoured production
of the 7-glucoside, and the minor glucosyl transferase
formed the 7- and 9-cytokinin glucosides in similar
proportions [62]. Entsch and Letham {S8] expressed
surprise to find that the 7- and 9-glucosides were not
formed by separate enzymes, especially considering
the small size of the enzyme (46,000 daltons).

However, in view of the many systems in which
cytokinin-9-glucosides are produced as the major
metabolite {19, 97, 145], it is possibie that a
separate cytokinin-9-glucosyltransferase exists, or a
‘cytokinin-7-glycosyltransferase’ which forms both
the 7- and 9-glucosides, yet favours production of
the latter. As with cytokinin oxidase-type systems [31,
100], different enzymes or isozymes of cytokinin-7-
glucosyltransferase with a similar function are likely
to occur in a range of plant tissues.

Although a trace enzyme, the glucosyl transferase
studied by Entsch et al. {62] could exert a regula-
tory role in metabolism since cytokinins occur in trace
amounts, evoking key responses at the sub-nanomolar
level.

Entsch et al. [62] considered that inhibitors of
cytokinin-7-glucosyl transferase merit study, as ‘a
stable, effective, and specific inhibitor in vitro could
be a valuable physiological tool and a means of
elevating endogenous free cytokinin levels by sup-
pressing formation of the very weakly active 7-
glucosides. Several studies have been undertaken in
thisregard {55, 89, 169, 200]. Greater effort in this area
could result in the development of regulatory mecha-
nisms optimizing tissue culture systems.

9.2 3-Glucosidase

Hydrolysis of O-glucosides of zeatin-like cytokinins
may function in controlling cytokinin activity. In this
regard 3-glucosidases would play an important role
(212]. Until recently, non-specific 3-glucosidases were
considered to be involved in cytokinin metabolism.
However, the existence of a specific "cytokinin-J-
glucosidase’ has recently been reported. Estruch et al.

[65] ransformed tobacco tissues with a ro/ C oncogene
from the T-DNA of Agrobacterium rhizogenes. This
gene coded for a ‘cytokinin-3-glucosidase’ which was
capable of hydrolysing [9G]BA toits free base. Despite
this report, Kaminek (99] considered such hydrolases
to be either absent or inactive in normal plant cells.

Almond 3-glucosidase did not hydrolyse cytokinin
7- or 9-glucosides in vitro [50], although limited cleav-
age of {7G}Z has been reported in radish tissues [126].
The resistance to hydrolysis was presumed due to their
C-N glycosidic linkages {91] although enzymic degra-
dation of a similar bond in [3G]BA {220] remains unac-
countable.

3-Glucosidases have functions unrelated to growth
{95}, so their activity in regard to cytokinin metabolism
is not surprising. Hughes [95] found two distinct g-
glucosidases produced by clover callus. It was shown
that 3-glucosidase activity and concentration varied
both between plants and between organs of the same
plant. Genetic vanation and the environment were
cited as causal factors of this. McCreight et al. [135]
later found different forms of J-glucosidase in differ-
ent plantorgans of the same species.

9.3 ﬁ~(9-Cytokinin)—a1anine synthase

The enzyme which converts cytokinin base to con-
siderably less active alanine conjugates is known
as lupinic acid synthase or §-(9-cytokinin)-alanine
synthase [241]. This enzyme is classed as C-N-ligase
lupinic acid ([9Ala]Z) (59, 154]. Enzyme-catalysed
formation of lupinic acid was determined by '*C incor-
poration from O-acetyl-srine-3-'*C as a substrate into
lupinic acid. Murakoshi et al. [154] demonstrated that
enzymes from different plant species which catalysed
the synthesis of 3-substituted alanines from O-acetyl-
L-serine had different specificities; not all enzymes
recognised zeatin as a substrate.

B-(9-Cytokinin)-alanine synthase was isolated
from developing lupin seeds by Entsch et al. [61].
In this report, a number of adenine derivatives were
shown to serve as substrates, although preference was
shown for compounds with high cytokinin activity,
including BA and Kinetin. In the reverse direction, a
small amount of base was formed [168]. Although
indole auxins have a similar type of ring structure
to purines, IAA was not a substrate for lupinic acid
synthase {61].
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19. Oxidative catabolism of benzyladenine
10.1 Cytokinin sidechuin cleuvage

Cytokinin activity is conferred on (intact) purine
molecules through the possession of a suitably-
structured NS-sidechain {132, 226]. When this
sidechain is (oxidatively) removed, relatively inac-
tive degradation products are formed. Further loss of
activity occurs on disruption of the adenine moiety
[18, 191]. The cytokinin-specific enzyme responsible
for such sidechain cleavage is cytokinin oxidase, an
enzyme common to both lower [4] and higher [234]
plants.

The activity associated with oxidative catabolism
was detected in many early cytokinin metabelic
studies, involving the degradation of cytokinin bases
and ribosides of both naturally-occurting [37, 144,
161] and synthetic cytokinins [57, 68, 69, 72, 134].
Fox et al. {72] even found a ‘benzoic acid-like com-
pound’ to be a product of the cleavage of BA. A
re-investigation revealed this ‘benzoic acid-like com-
pound’ to be the aldehyde sidechain cleavage product
(24

Since the initial isolation and characterisation of
cytokinin oxidase from Zea mays [234], there has been
general agreement that the presence of a2 double bond
in the isopenteny! sidechain of a cytokinin renders it
susceptible to oxidation. A great number of studies
have reported on such oxidation [79, 96, 165, 168,
170, 214].

The converse view that cytokinins with saturated
aliphatic (DHZ) or ring (kinetin or BA) sidechains do
not serve as substrates for cytokinin oxidase, has also
been widely advocated [86, 121, 126, 137, 160, 167,
234]. Despite regular reports on degradation product
formation, cytokinin oxidase-mediated catabolism of
both BA and kinetin remains controversial. This scep-
ticism is well substantiated, for to date, no cytokinin
oxidase preparations isolated from plants have appre-
ciably utilised BA 29, 100]. Despite the lack of activ-
ity observed in vitro, a large body of circumstantial
evidence has accumulated which is indicative of in
vivo BA degradation. Many [8-!“C]-labelled products
of oxidative catabolism (adenosine, adenine, adenine
nucleotides, ureides) have been identified following
application of [8-'*C]JBA to a wide variety of plant
systems [17, 54, 67, 72, 104, 134, 203, 216].

The degradation of BA and kinetin in many sys-
tems has been attributed to a separate enzyme system
[121], distinct from cytokinin oxidase. These authors
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attributed the cleavage of furturyl groups from the N°-
position (to yield adenine and its derivatives). to Sl-l_Ch
1system. An alternative theory for observed loss of the
benzyl group was proposed by McCalla et al. [134].
They considered that C-8 from [8-'*C]BA could be
lost to the ‘one carbon’ pool with subsequent reincor-
poration into newly synthesised purine. Some 12 years
prior to Whitty and Hall’s report of cytokinin oxidase
[234], McCalla et al. [134] also considered the possi-
bility of direct enzymic removal of the benzy! group.

Zhang and Letham [239] hypothesised that N
de-benzylation of BA ‘probably involves an imino
intermediate formed enzymically by elimination of
a hydrogen atom from both the NH group at posi-
tion 6 and the benzylic methylene’. In species where
cytokinin oxidase catabolise BA [67, 239], it is pos-
sible that such activity can only be expressed if the
enzyme facilitating production of the imino form is
also present and active. The imino-purine intermediate
postulated by Whitty and Hall [234] has been isolated
[31] as an intermediate in the degradation of isopen-
tenylated cytokinins. As BA has not been shown to be
a substrate for cytokinin oxidases in any in vitro assays
to date {100], the importance of an enzyme catalysing
formation of an imino intermediate should be accorded
mare consideration.

Chatfield and Armstrong [31] provided an indica-
tion that distinct isozymes of cytokinin oxidase may
exist. Cytokinin oxidase from Vinca rosea crown gall
tissues [137] appeared to be a different system to that
partially purified from maize kernels [234]. The molec-
ular weights of the two enzymes, determined by gel
filtration, are very different: 944400 (& 10%) for maize
and 25100 (£ 10%) for Vinca rosea. The two enzymes
exhibited similar substrate specificities; neither recog-
nised BA as a substrate. Thus, evidence for hetero-
geneity in cytokinin oxidase activity is provided by the
range of molecular weight estimates for the enzyme
from different plant tissues. Chatfield and Armstrong
{31] suggested that this heterogeneity is related to
glycosylation and noted that should this be confirmed,
then new implications for the compartmentation and
regulation of this enzyme would arise. A clear impli-
cation of such heterogeneity is that specific cytokinin
oxidases may exist which preferentially attack BA,
rather than isopentenylated cytokinins. In all studies to
date, in vitro assays have been performed with enzymes
extracted from tissues in which low in vivo degrada-
tion has been observed. Enzyme extracts from tissues
which are known to substantially degrade exogenously
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applied BA e.g. Glycine muxcv. Acme) [67] could well
prove rewarding in this regard.

Cytokinin oxidase is able to utilise a number of
different cytokinin substrates, including bases, ribo-
sides [190], N-glycosides and N-alanyl conjugates
[137]. However, ribonucleotide {110, 137} and O-
glucoside [186, 225] forms are thought to be resis-
tant to cytokinin oxidase. Data has been presented
which suggests that substrate induction occurs, where
cytokinin degradation is promoted by cytokinins them-
selves (31, 153, 203]. The exact metabolic level
of sidechain removal from BA is not known [105].
Several studies have shown that N-conjugates are
susceptible to further inactivation through oxidation.
Cytokinin oxidase is considered to be the active
catalyst. Soybean callus degraded {7G]Z, [9G]Z, and
(SAla)Z to [7G]Ade, [9G]Ade and [9Ala}Ade respec-
tively [168]. These compounds appeared as minor
metabaolites. Prior to this report, Letham et al. {126]
had identified [7G]Ade in radish seedlings. The 7-
glucoside of zeatin was metabolised to adenine, adeno-
sine and [7G]Ade within two days [138]. Should a
cytokinin oxidase-type system fully utilise BA metabo-
lites, one might expect these same products to be
produced.

A further metabolite of BA may be adenosine-5'-
phosphate (AMP)}, which has previously been iden-
tified during metabolic studies with zeatin [52] and
[7G)Z [138]. Early BA metabolic studies {47, 134}
reported on the identification of adenylic nucleotides
as products. However, in recent years, no reports of
AMP formation from BA have been published.

McGaw and Horgan [137] considered cytokinin
oxidase as a candidate for the control of endogenous
cytokinin species and levels. However, Whitty and
Hall [234] had earlier cautioned against assuming that
the whole purpose of cytokinin oxidase is to help main-
tain some specific level of cytokinins. Rather, these
authors viewed the rate of turnover of cytokinins tobe a
means of conveying information necessary for control
of cellular growth. An actual role for cytokinin oxidase
in the control of the endogenous levels of cytokinins is
difficult to assign, when one considers certain anoma-
lies. In Vinca crown gall tissue and com kemnels,
the most abundant cytokinins are [SR]Z and zeatin
[185]. Both these hormones are readily metabolised
by cytokinin oxidase [234], the presence of which has
been demonstrated in these tissues. Compartmentation
of substrates probably prevents these cytokinins com-
ing in contact with the oxidative enzyme system [137].
Evidence for such distinct compartmentation of differ-

ent isozymes of cytokinin oxidase has recently been
presented {100].

Plant cytochrome P-450 found in the microsomal
fraction of cauliffowers was shown by Chen and
Leisner [36] to exhibit oxidative dealkylation activity,
much as cytokinin oxidase does. After two hours incu-
bation of {9R}iP with cytochrome P-450, about 15-
25% adenosine was formed.

If therefore appears that benzyladenine is the
substrate for a cytokinin-oxidase type system which
degrades this cytokinin adenine. Cytokinin oxidase
may not directly utilise BA, but only following con-
version to an imino intermediate. The potentially
restricted distribution of an (uncharacterised) enzyme
catalysing formation of this intermediate, would
account for the limited degradation of BA (relative to
zeatin or iP) which has been observed in many tissues.

11. Conclusion

Cytokinin metabolites possess functional, though
somewhat obscure roles in plants {121, 229], contri-
buting to either an active or inactive pool. Inactiva-
tion of cytokinin occurs through sidechain cleavage or
alternatively N-conjugation, which proceeds through
S-alanylation or 7- and/or 9-glucosylation [99, 138].
The 3-glucoside is more biologically active than
other cytokinin N-glucosides {122, 127] and appears
reversibly sequestered [119, 220], suggesting a stor-
age role. Internal levels of free, non-metabolised base
appear important in the initiation of physiological
responses [207]. Nucleosides and nucleotides are also
considered as active forms [109, 121], given their ready
conversion to cytokinin bases and/or interconversion
(215,221].

From a physiological viewpoint, cytokinin
metabolism may be classified [93] under three head-
ings:

1.Irreversible loss of bioclogical activity through
oxidative degradation of the N® sidechain (prod-
ucts here referred to as ‘oxidation products’).

2. Irreversible conjugation with alanine or glucose
with loss of, or reduction in activity (products here
referred to as ‘N-conjugates’).

3. Reversible conjugation to (inter-convertible) com-
pounds which are themselves active, or serve as
storage forms which may be converted to active
cytokinins (her referred to as the ‘active pool’).
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